生命从地球开始已经过了三十亿年之久,从最基础的微生物到复杂琳琅满目的生命演化至今。但我们唯一知道有生命的星球的第一个有机体是如何从原始汤(primordial soup)发展成现今的大地。
电火花 Electric Spark
电火花可以从大气中的水、甲烷、氨和氢气生成胺基酸和醣类,就像在1953年著名的Miller-Urey实验所呈现的,表明闪电可能是地球初期创造生命从无到有的关键。经过数百万年之后,更大且更复杂的分子可被形成。尽管之后有研究揭示起初的地球大气层实际上是氢缺乏(hydrogen-poor),科学家们还是表示早期火山云雾在大气层里可能含有甲烷、氨和氢气,并且云雾中充斥着闪电。
电火花可以从大气中的水、甲烷、氨和氢气生成胺基酸和醣类
群落黏土 Community Clay
第一个生命分子可能在黏土中相遇,根据一位在苏格兰哥拉斯哥大学的有机化学家Alexander Graham Cairns-Smith详尽的想法。这些表面可能不单单集中那些有机化合物在一起,但也帮助他们组织成很像我们现在的基因模式。
DNA主要角色是存放那些分子应该如何安排的资讯。基因序列在DNA中是胺基酸如何安排在蛋白质中的基本说明书。Cairns-Smith说明矿物晶体在黏土中能去排列的有机分子成有组织的图式。过一段时间,有机分子接管了这份工作并且自行组织了起来。
群落黏土
深海喷发口 Deep-Sea Vents
深海喷发口理论认为生命可能从海底热液喷口开始,喷涌出关键的富含氢分子(hydrogen-rich molecules)。这些岩石边角能够聚集那些分子在一起并提供矿物催化剂造成重要的反应。即使到现在这些喷发口依旧富含丰富的化学物和热能,维持着活跃的生态系统。
深海喷发口
寒冷的开始 Chilly Start
冰可能覆盖海洋长达三十亿年之久,而以前的阳光比现在要少三分之一。这一层冰可能厚达几百英尺,可能保护在水面下脆弱的有机物免受来自宇宙紫外线和太空物撞击的影响。冰冷可能也帮助这些分子的生存时间更长,允许了关键反应的发生。
寒冷的开始
核醣核酸世界 RNA World
现今的DNA需要的蛋白质来形成,而且蛋白质需要DNA去形成,所以他们没有彼此怎么可能形成?这答案可能是RNA,它能储存资料就像DNA,可作为一种酶像蛋白质,而且同时帮助DNA和蛋白质的产生。后来DNA和蛋白质取代了这个“RNA世界”,因为他们效率更佳。