登录 注册

如果一个绝对的圆放在绝对的平面上,接触面是不是无限小?

这种问题其实并不难解答:如果你真的能找到一个绝对的圆还有一个绝对平的平面上,并且保证放上去之后圆和平面不会有任何变化,那么接触面就可以是无限小!

如果不能,很抱歉,接触面很显然就不会是无限小!

那么你能吗?能同时找到一个绝对的圆和绝对的平面吗?很显然你不能!你看,答案就很明显了,如此简单!

为何不存在绝对的圆?圆周率π或许已经给出了答案,π是无理数,无限不循环的,这意味着什么?意味着没有真正的圆形!用微积分的思想理解,真正的圆其实就是正N边形,这里N趋于无穷大,当然你不会找到这样一个正N边形,所以绝对的圆不存在!

即使绝对的圆存在,也不代表现实中存在绝对的圆形物体,“圆”和“圆形物体”是两种不同的概念,一个是数学,一个是物理和现实,而数学只是人类了解世界的手段而已,并不等同于现实!比如理论上不存在大于0的最小的数,但现实中存在最短的长度单位,就是普朗克长度!

同时,假设同时存在绝对的圆和绝对的平面,结果也会引发矛盾。因为这意味着圆和平面接触面是无限小,压强就会是无限大,无限大的压强你敢想象吗?理论上也不会存在无限大的压强,什么样的平面能支撑无限大的压强呢?很明显这是矛盾的!

问题的本质主要体现在数学与物理现实的不同,数学只是工具,数学可以帮助我们更好地理解世界,但并不等同于物理现实!

声明:该文观点仅代表作者本人,探趣吧系信息发布平台,探趣吧仅提供信息存储空间服务。
大家都在看
北京各大医院挂号